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Equation (29) gives""

I'(co -+ 7t'+y) =1.2 MeV,

in agreement with experiment. The other transition
moments, namely, tsar (E+"~ IC++y), tsar (E*'—+

E'+p) are related to (28) or (29) simply by SUs and

so are ttr(p'art+7), tsr(to~st+7), tsr(4~rt+y) it

we neglect X', g' mixing.
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Using a representation for the partial-wave S matrix developed recently by the authors, a representation
for the total scattering amplitude is constructed with Regge trajectories as the sole input. The resulting
representation has the following properties regardless of the number of trajectories included: (a) It has the
correct analytic structure; namely, the double spectral function is nonvanishing in a region bounded by the
curved boundaries implied by the Mandeistam representation. (b) It is unitary. (c) It gives the correct
threshold behavior for both the real and the imaginary parts of the total amplitude. (d) It converges rapidly.
A potential theory example is worked out explicitly and with one trajectory input, numerically an excellent
agreement with the exact result for the total amplitude is obtained. The representation is then generalized
to the relativistic case. Invoking crossing, a set of relatively simple bootstrap equations is obtained for a
self-consistent determination of the Regge trajectories. Also, an alternative procedure is proposed which
imposes approximate crossing symmetry in the unphysical region to determine the Regge parameters. The
latter method is operationally more attractive since it obviates solving any dispersion integrals, and also has
the added advantage of avoiding inelasticity. Finally, in this method, no statements (or approximations)
regarding the I=2 channel need be made, since the latter can be eliminated from the appropriate crossing
relation.

I. INTRODUCTION

~ 'HE bootstrap hypothesis, ' that all strongly inter-
acting particles are composite systems of each

other, though intuitively simple, is not easily put into
a rigorous mathematical form' which can then be
approximated in a consistent manner and thus meaning-

fully compared to experiment. The most encouraging
statements still remain the signs and relative magni-
tudes of forces as determined from the crossing matrices.
Quantitative methods suiIer from various diseases.

By far the largest class of such calculations treat the
exchanged particles (forces) as elementary and compute
dynamic particles as output, requiring these to have the
masses and couplings of the elementary input particles.

+ Research supported by the U. S. Atomic Energy Commission.
f Present address: Department of Physics, University of

Pittsburgh, Pittsburgh, Pennsylvania.
f. Present address: Department of Physics, Northeastern

University, Boston, Massachusetts.
' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394

(196k).' A most complete bibliography of the literature on bootstraps
may be found in "Lectures on Bootstraps" by F. Zachariasen,
given at the Pacific International Summer School in Physics,
1965, Honolulu, Hawaii (unpublished).

Such a treatment violates the basic concept of the
absence of elementary particles and crossing symmetry.
Furthermore it also leads to the introduction of parame-
ters, subtractions and cutoRs, to which the solutions are
not insensitive. Whether such calculations can be con-
sidered an approximation to the bootstrap hypothesis
is not clear, since they are not based on a consistent ap-
proximation scheme of a rigorously formulated theory.

In order to free the calculations of elementary
particles, it is now plausible to exploit the fundamental
connection between composite particles and Regge
trajectories and attempt to bootstrap entire trajectories
rather than just the position and slope at a single point.
If this is done by solving the ftf/D equations, in a, way
similar to ordinary bootstrap calculations, then the
problem is how to construct a "potential" from the
exchanged trajectories. Alternatively, we may try to
construct an amplitude which is both unitary and
crossing symmetric in terms of the Regge trajectories
and use these conditions to determine the parameters
of the trajectories.

The most serious attempt so far to develop a con-

sistent approximation scheIne is the "strip approxi-
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mation. '" Here, the contribution from each pole arises
from a distinct strip in the Mandelstam representation.
The introduction of a definite, though somewhat
arbitrary strip width so—s&, not only brings in a parame-
ter, but also gives straight boundaries to the double
spectral function p(s, t), instead of the correct curved
ones. The resulting artificial singularities can be re-
moved, but the value of the parameter s~ is not un-
important in preliminary calculations. 4 The hope here
is that it will become so when more channels are
included. A modification of Kretzschmar, which also
uses a coupling between trajectories and residues sug-
gested elasehwere, ' differs from the usual strip approxi-
mation by de6ning the strip width as the energy at
which the Regge trajectory recedes into the left-half
/-plane. The double spectral function of Kretzschmar
also has the correct curved boundary. As was pointed
out in a potential theory example, however, ' even this
rather large strip width is not large enough to serve as
a reasonable dividing energy between "resonant" and
"potential" scattering. ~

In any approach to the Reggeized bootstrap problem,
one crucial demand is to have a representation of the
amplitude in terms of Regge poles, which not only
converges, but converges as fast as possible. With
present computational facilities, including trajectories
other than those which reach or come near the right-
hand / plane, in an actual calculation, is manifestly an
impossible undertaking.

The present approach is based on a sequence of
approximations which have been developed by con-
sidering Regge trajectories in potential theory. ' The
representation we will use' is a modification of one due
to Cheng. ' The modification, based on the asymptotic
properties of all trajectories in the energy plane, brings
about extremely rapid convergence in the potential
theory examples studied. The residues P(s) are simple
functions of the trajectories n(s).

In Sec. II, we construct the total scattering ampli-
tude within the framework of two-body unitarity and
the nonrelativistic case. In Secs. III and IV we gen-
eralize to the relativistic case and suggest two alter-
natives to exploit the features of the representation.
The first is to construct a "potential" to be used in the
conventional X/D equations. The second is an alter-
native scheme, operationally much simpler, which

' G. F. Chew, Phys. Rev. 129, 2363 (1963) and G. F. Chew and
C. E. Jones, Phys. Rev. 135, 3208 (1964).

4 D. C. Teplitz and V. L. Teplitz, Phys. Rev. 137, 8142 (1965l.
5 M. Kretzschmar, Nuovo Cimento 39, 835 (1965).
'W. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.

Rev. 140, 31595 (1965).
7 This may, however, be due to the particularly nonresonant

nature of the Yukawa potential, which makes the resulting s1
rather low.

S. C. Frautschi, P. Kaus, and F. Zachariasen, Phys. Rev. 133,
B1607 (1964); D. Hankins, P. Kaus, and C. J. Pearson, ibid. 137,
B1034 (1965).

'H. Cheng, Harvard University (to be published).

determines the Regge parameters by imposing crossing
symmetry at isolated points in the unphysical region.

In Sec. V, some numerical results are presented for
a potential theory example. The comparison of the
representation to the exact result reveals that, at least
in the case tested, the leading trajectory represents the
amplitude extremely well, but the inhuence of the
trajectory persists to energies much higher than those
for which it retreats to the left-hand $ plane.

and

igs exp[—(l+e) &]
P~ t(cosh&), (2)

Qs l+ts

cosh)(s) = 1+p'/2s,

cosh)(s) = 1+2@'/s,

with g' the strength of the Vukawa coupling and p, is
its range. In the e-trajectory approximation when the
product is limited only to e terms, the representation
has several remark. able properties:

(a) 5(l,s) is unitary, no matter how many terms are
kept in the infinite product.

(b) If the input trajectory a„(s) is assumed to have
the correct threshold behavior, the real and imaginary
parts of the scattering amplitude also have the correct
threshold behavior. The double spectral function in
the Mandelstam representation would thus have the
correct boundary. Other schemes, such as the Khuri
representation, do not share this property.

(c) For a single Yukawa potential, the total ampli-
tude given by (1) has the correct analytic behavior in
the cos8 plane; namely, it has a pole at cos8= 1+p,'/2s
from the Q function and a cut starting at cos8= 1+2''/s
from g(s). In Appendix C it will be shown that for a
distribution of Yukawas with maximum range 1/p,
the generalization of (1) correctly changes the Born
pole into a cut from cos8= 1+@'/2s to cos8= 1+2@,'/s.

As discussed in the earlier paper, ' the representation
was constructed so that the contribution from each
Regge pole rejects the analytic properties of the total
amplitude, so that it is not necessary to depend on the
infinite collection of poles to produce the correct cut,

II. NONRELATIVISTIC TOTAL AMPLITUDE
VIA THE MODIFIED CHENG

REPRESENTATION

We would like to summarize first, some of the
features of the modified Cheng representation, ' which
are pertinent to the present discussion. In this repre-
sentation, the partial-wave 5 matrix in terms of its
trajectories n„(s) is given by

~(~, )=(e PL(g'/V")Q ( oshk)])II~-(~p), (1)

where

S„(l,s) = exp
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f(~,z)=Z (2t+1)A (~)& (z),
5=0

(3)

where s= cosg, 0~& 0~&~, and

Si(s)—1
A, (s) =

2$ s
(4)

As usual, we obtain the continuation via the Watson-
Sommerfeld transformation for all s:

f(s,z) =

unitarity and symptotic behavior. Then, as expected,
a rapid convergence to the exact result in terms of
trajectories close to the physical right-hand / plane was
verified by explicit numerical computation. One point
which was numerically observed needs reassertion; it
was found that at the energy for which the top tra-
jectory recedes to the left of Re)= —0.5, the S matrix
is nowhere close to the Born limit, which would set
ReS=1, as can be seen from Fig. 1 of Ref. 6. Hence,
if one wants to keep only the low-s part of the trajectory
(strip approximation), the large-s part of the amplitude
would be better represented by the relativistic analog
of (1), with v= 0, than by the nonunitary Born term.

The above representation then forms the starting
point for obtaining a continuation of the total amplitude
via the Watson-Son1merfeld transformation. We define
the total amplitude f(s,z) through

structure in the s and t planes; in particular, it will have
a pole at z= 1+u'/2s and a cut beginning at z= 1+2ti'/s
in the s plane, for a single Yukawa potential. This will

be shown in Appendix A. As is well known, this state-
ment is only true if both the Regge terms and the back-
ground integral in (5) are retained. The background
integral cannot be discarded without impeding the
correct analytic structure in the s plane. Therefore, we
have a faithful representation, at least in the sense of
potential theory, as the numerical results of this paper
and of a previous paper indicate; it is valid for s~&0
and all s no matter how many trajectories are retained.
Furthermore, the double spectral function p(s, t), con-
sistent with the above amplitude f(s,z) will be non-
vanishing in a region of the s-t plane bounded by the
correct curve as required by the Mandelstam repre-
sentation; this is shown in Appendix A.

Our procedure is now straightforward. We insert the
input trajectories in (1) and compute the partial-wave
amplitude; these amplitudes are then used in (5) to
compute the total amplitude f(s,z) valid for s above
threshoM and all s. In the next section w'e connect it
to its "unphysical" region via relativistic crossing and
thus close the loop.

III. RELATIVISTIC TOTAL AMPLITUDE

We shall consider, as a specific example, the problem
of elastic pion-pion scattering. Let us define the usual
s, t, I variables for this problem;

Rean) —y

P „(—z)
(2~„+1)P„

sin%'&n
(5)

s = 4 (v+tio'),

t= —2v(1—z),
u= —2v(1+z),

where the P„(s) are the residues of A (t,s) at the Regge
poles n„(s). In order to verify the convergence of the
background integral, " we need only state that for
interactions for which (1) is valid we have

where v=q, ', the square of the center-of-mass mo-
mentum in the s channel and p, 0 is the pion mass. The
isotopic spin index will be displayed explicitly, so that
for s~&4p, 0' the total amplitude in the s channel may be
written

and

( 5+~v)r~——

A(——;+ip,s)=ol I, Ipl ~ ~
A, i(s, t, )u= g (2l+1)A,r(s) EiI 1+6 ( 2t

lM s 4pp'1—
P ~,.„(—z) (g

—Ivl(~lnl)
=oI

I pl ~ (7)
sin~( ——,'+ ip) 4 gp

where —ir & i)=Re cos '(—z) &~ n. . Hence, the integrand
in (5) converges for s&~0 and z not on the real axis
between z= 1 and z= ~. The value of f(s,z) on the cut
must be obtained in a limiting sense, as one approaches
the axis from above or below.

Now, if the input partial-wave S matrix has the
correct analytic structure in the / plane, as it does,
then the total amplitude will have the correct analytic

"T.Regge, Nuovo Cimento 14, 95k (j.959).

—=5'(s t)+(—)'A'(s)u).

The requirement of Bose statistics is automatically
satisfied; namely, A, r(s, t,u)= ( )rA, )(s,u, t). Als—o, as
continuation in / is made, proper "signature" is pro-
vided for.

The partial-wave amplitude is defined by

S'(l,s) 1—
A r '(s)=

2ip(s)
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where the phase-space factor

factors out all the kinematical singularities from the
amplitude; the Watson-Sommerfeld transforms are
made on the A. amplitudes. As usual we obtain

of the trajectories, together with their assumed analytic
properties, may completely determine the trajectories, '
one may in principle consider the subtraction parame-
ters, obtained from known indeterminacy points in
Ref. 8, and c, p, and ps as the only input.

For a much larger class of Yukawa potentials, how-

ever, one obtains

n„(S) ~ —I+C

i'
2$~ pp

Sinful 1

Renni& —
g slnx'n&

(10)

where m=1, 2, , p is a real positive number and
cosh&=1+8yss/(s —4ps'). The asymptotic form (11) is
somewhat restrictive. Since the asymptotic behavior

"Self-consistent calculations of the top trajectory within the
framework of potential theory are given in D. Hankins, P. Kaus,
and C. J. Pearson, Phys. Rev. 137, 31034 (1965). Similar calcu-
lations including both the first and second trajectories have been
performed by C. J.Pearson, Ph.D. thesis, University of California,
Riverside, 1965 (unpublished). The results of the latter indicate
that it is a nontrivial matter to include more than one trajectory
in calculations of this type.

'~ J. M. Cornwall and M. A. Ruderman, Phys. Rev. 128, 1474
(1962).

"This general form of a trajectory is shared. by relativistic
trajectories as shown by V. N. Gribov and I. Y. Pomeranchuk,
Zh. Eksperim. i Teor. Fiz. 43, 308 (1962) LEnglish transl. : Soviet
Phys. —JETP 16, 220 (1963)j, under very general assumptions
with no regard to an underlying Hamiltonian.

We now would like to obtain a relativistic analog of
the modi6ed Cheng representation; namely, an ex-
pression for the partial-wave 5 matrix in terms of the
relativistic input trajectories, with the appropriate
"modihcation. " In writing any representation for the
partial-wave amplitude, one has to make assumptions,
implicitly perhaps, about its asymptotic behavior in
the l plane, or equivalently, about the asymptotic
behavior of all its Regge trajectories, even though one
may be interested in computing or bootstrapping only
the top trajectory on which physical bound states or
resonances may lie."

For a superposition of complex, energy-dependent
Yukawa potentials restricted by ! U(r,s)! (Mr ' we
can write" "

ih'
o.„(s) -. —tz+c+ P„ t(cosh'),

g~oo 2$~

This yields an extension of the representation, given
in Appendix C. A suitable parametrization of o (p) then
allows for considerably more input.

In what follows, the exposition is in terms of the more
restrictive form (11), which is sufficient to demonstrate
many qualitative features of the proposal; in realistic
calculations, a more general ansatz such as (11') is
undoubtedly necessary.

The parameters p and c of (11) can be simply related
to the behavior of the potential near r= 0. Furthermore,
for potentials which have the behavior r ' & near r= 0,
the end points of the trajectories are equally spaced. '4

For example, when q=0 (a Yukawa like potential),
c=0, and if there is no energy dependence, p=st.
Actually, in what follows, we need a somewhat weaker
assumption that (11); namely, that c may even be a
function of n but such that for large e the spacings
again become equal. This is satis6ed, for example, by
the Klein-Gordon and Dirac trajectories with an r '
type of interaction. " We hasten to add that through
(11) we are not implying that the trajectory has
necessarily no left-hand cut, as a relativistic trajectory,
even the top one, may. Thus, the end points of n„(s)
for s —+ —~ may well be quite diferent.

Assuming then that the input trajectories have the
asymptotic behavior (11), we have from the Cheng
representation

exp((c —e—l) Q
lnS(l, s) —+ P (n.* n.)—

c—rs —l
ih'

=—Qi, (cosh/) . (12)

Using (12), we follow our derivation of the non-
relativistic modified Cheng representation, and deduce
in Appendix 3 the following representation for the

' H. Bethe and T. Kinoshita, Phys. Rev. 128, 1418 (1962), and
R. Newton, J. Math. Phys. 3, 867 (1962)."G. S. Guralnik and C. R. Hagen, Phys. Rev. 130, 1259 (1963).
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partial-wave 8 matrix:

InS(l, s) =Q
*

exp((P —l) &]
dI'

1'—l

expL —(l+c+I)Q
P„ i (cosh/)c+I—

where

+ Q —.(co»t) (13)
(~—4w')'

327pp
cosh)= 1+

s—4pp

and the crossing relations

Ai(s, t,N,)= g Xir.A'(t, s,e)

=(—)r P &rr Ar'(N, s,l),

where

3
1

Xg II
1
3

1
2

1
2

5/3
5
6

1
6

it is straightforward to obtain for s(0
-4qs2

ImA ir(s) =
2gs 4pp~

t
ds P, i 1+

2q.m)

)& P Xrr. ImAr'(t, cos8i), (17)

where

cos8i= 1+2s/(t 41ip') . —

Since the integral in (17) runs only over values of
t)41i02 (q,2(0), we only need ImAr(s, s,) for physical
s and all s,. Given the input trajectory then, this can
be evaluated using (10) and (11).Thus, essentially the
"Born term" is obtained:

1 " ImA&r(s')
Bir(s) = ds'. —

4pp~ S —S

As pointed out in Appendix B, y is a parameter to be
determined self-consistently. In Appendix 3, we also
verify that in (13) we have the proper "modification. "
That is to say, (13) reduces to (12) as s ~~ and also
that near threshold we still have the correct behavior
for both the real and imaginary parts of the 5 matrix.

For physical $, using the usual partia1-wave projection

1

A i(s) =- d(cos8)Pi(cos8)A (s, cos8) (14)
2

Now we can set up the N/D equations to solve for
the "output" partial-wave amplitude Ai(s) for all s.
This may then be compared with the "input" A&(s)
obtained through the trajectory. The self-consistency
problem then simply reduces to varying the trajectory
parameters until the two amplitudes match. This
argument may easily be extended to the whole / plane
by replacing the partial-wave projections in (14) and
(17) by the so-called Wong continuation"; the Froissart
continuation is valid only in the region of the / plane
where Rel&Max Ren.

IV. AN ALTERNATIVE METHOD FOR
IMPOSmo CROSSING

In this section we outline an alternative procedure
for approximately satisfying the crossing relations. This
differs from that discussed in the previous section in
the sense that rather than calculating through crossing
the output trajectory resulting from a given trajectory
or "potential, " and then comparing, here we rather
work. with the trajectories directly and see to what
extent they cause the crossing relations to be satisfied.
That is, (13) may be used via the Watson-Sommerfeld
transformation to obtain a total amplitude valid for
s) 4p, p and all t; in the crossed reaction it will be valid
for t&4pp' and all s."Consequently, there is a common
region of validity and one may attempt to adjust all
the trajectory parameters until both sides of the crossing
relations are satisfied for some region of the (s,t) plane.
One might do this in a way analogous to Ref. 18, in
which a certain "figure of merit" is achieved by mini-
mizing some function of the number of points at which
crossing is to be imposed.

Apart from being operationally much simpler than
earlier ones, this method has two other virtues to
recommend itself. Until s=16pp, elastic unitarity is
respected, so presumably there is a region (unphysical)
of the s-t plane where our expressions, derived on the
basis of elastic unitarity alone, should work. Therefore,
so long as we are in the region 4pp Ks,f(16pp we do
not have to incorporate inelasticity. Secondly, we do
not have to make any statements, or approximations,
about the I=2 channel since a crossing condition can
be written simply in terms of the I=0 and I=1
channels alone.

The only input here are the trajectories themselves,
and with the exception of the pion mass, it is assumed
that all parameters must be determined by some
approximate satisfaction of the crossing relations, if
indeed they are even sufhcient for such determination.
For P)0 the theory is fully convergent and no arbitrary
parameters seem to be necessary. %e have tested the

"G.F. Chew, Phys. Rev. 129, 2363 (1963).
'7 The possibility of analytically continuing the rnodiQed Cheng

representation to negative values of the energy is under in-
vestigation.

8 R. E. Kreps, J. F. Cook, J. J. Brehm, and R. Blank. enbecler,
Phys. Rev. 133, 81526 (1964).
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case P= —'„c=O of (13), in a one trajectory approxi-
mation, and find good agreement with exact results
for the partial waves' and for the total amplitude, the
latter results being discussed in the next section.

Having veri&ed that (13) gives good results for the
case p= st and c=O in a situation where the answer is
known; namely, in potential theory, one may feel a
little less hesitant about proceeding to unphysical
values of s and t which satisfaction of the crossing re-
lations would require, and moreover, a region in which
there are no exact results to compare with. Optimisti-
cally, one might hope that the use of whole trajectories,
rather than a single point on a trajectory, might make
such satisfaction possible, and consequently allow one
to make more positive statements with respect to the
bootstrap hypothesis and indeed to whether satis-
faction of the crossing relations leads to the same world
chosen by nature.

One region of the (s,f) plane is eminently suitable
for a direct test of our ansatz regarding the trajectories,
pending a complete solution of our bootstrap equations.
What we are alluding to of course is where one variable,
say t, is large and the other, say s, is constrained to be
very small.

Let us therefore consider (10) for t large and s small.
Then, as is well known, the leading Regge pole term
dominates and we have

~~'(g f) = —
2rl 2tr( l'+11P'(~)

-P- . (—1—2f/( —4 o'))

sin2rn'(s)
(19)

&2(—1—»/(f —4W') )
X (20)

S1117ll

An approximate imposition of crossing can then be
implemented between (19) and (20) to determine the
trajectory parameters. To be able to see more clearly
what is going on let us restrict ourselves to the special
case of the parameter c=0; this means that the tra-
jectories actually end up at negative integers. In this
case, (20) can be solved in closed form to obtain for small

Also, in the t channel, for large t, we have the analog
of (12) for the partial-wave amplitude with our assumed

asymptotic behavior of the trajectories. This partial-
wave amplitude can be put into the background integral
in (10), written appropriately for the t channel, re-
membering that there is no Regge term for large enough
t. Specifically,

1 '+'" (22+1)
222'(t, s) = dllp(f);,„4 4

/2, h'
&& expl —Q2, (cosh), ) l

—1
i

s and large t
h' t'—&

AI2(t, S)=
4 (4i2p' —s)

(21)

x
B2(f)=-

4p, o

2s
&» (& t) ImQ~I 1+—

l (22)
f 4)2p 2—

For large f, we can use (19) for A(s, t) and because of
the (—f) ~ i'& factor, the leading term in B2(t) is obtained
from small s contributions. Hence approximately, we
can write

(
B2(f) = f.t"-V(f)QI 1+

2 large ( ] 4~ sj
(23)

where f(t) presumably has a very weak t dependence.
Equation (23) resembles our "input" partial-wave
amplitude for large t, as can be seen from (12) with
c=0. As above, this B~(t) would then obtain an A (t,s)
of the form given in (21). This argument therefore
furthers our belief that so long as our "modification"
is determined by the input trajectories themselves, our
system of equations is internally consistent, at least
approximately.

We may remark that. a form similar to (23) was
written down on the basis of reasonableness by Bander
and Shaw'0 in their calculation of the p-trajectory
parameters.

' M. Froissart, Phys. Rev. 123, 1053 (1961).
~M. Bander and G. Shaw, Phys. Rev. 135, B267 (1964).

Recently, J. D. Amand and G. C. Joshi, Nuovo Cimento 38, 1588
(1965) have shown by a suitable modification of the f17/D pro-
cedure, that it is possible to obtain a self-consistent solution for
the p parameters; m, ~400 MeV and F,=167 MeV. Bander and
Shaw were unable to obtain a solution.

Various qualitative features may now be verified;
in the limit of large f, (19) contains a behavior of the
form t ('&. Furthermore, accord. ing to the Froissart
limit we have n(0) &~1." Therefore, in the region of
small s, where (21) is valid, we see that (19) and (21)
are consistent for p&~0. In the same spirit, if we now
demand that the threshold behavior be correct, as is
done in Appendix 8, we get p&. —,', since c=0, which
seems to imply an n(0)&st; specializing to the I=1
case, this is a number consistent with various phe-
nomenological estimates for the p trajectory. For the
I=O case, this would imply that either p=0 or the
Pomeranchuk trajectory does not end up at —1.

That our scheme has some germs of truth and hence
may have a chance of succeeding; i.e., an approximate
satisfaction of crossing symmetry may indeed be
possible, can also be seen by explicitly using crossing
to obtain the contribution to the "Born term, " B~(t)
for large f, from 2 (s,t) for large t and small s, and then
obtain an A (t,s). It is of the same general form as (21).

To see this, let us write down Bg(f) for large f, sup-
pressing isospin symbols for the moment, in terms of
A (s,t) using crossing:
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TABLE I. In this table are presented the numerical results which have been plotted in Figs. 1—6 as well as an additional column which
gives the Grat term of (5) of the text (background integral). The column labeled "Regge term" was calculated from the second term of
(5). The column labeled "calculated amplitude" is the sum of the preceding two; i.e., Eq. (5) with one modified Cheng trajectory as
input, the exact trajectory being used. The last column is the exact amplitude as explained in the text.

Background
integral

Im
Regge term
Re Im

Calculated
amplitude

Re Im

Exact
amplitude

Re Im

5.0

1,0

0.1

09
0.6
0.3
0.01—0.3—0.6
09
0.9
0.6
0.3
0.01—0.3—0.6—0.9
0.9
0.6
0.3
0.01—0.3—0.6
09

0.833
0.293
0.161
0.104
0.071
0.051
0.037

—0.611—0.202—0.149—0.132—0.122—0.115—0.110
—1.357—0.621—0.379—0.254—0.172—0.119—0.083

0.291
0.208
0.164
0.137
0.116
0.101
0.090

—1.144—0.639—0.464—0.368—0.302—0.256—0.221

0.377
0.182
0.117
0.081
0.057
0.040
0.028

0,0
0.0
0.0
0.0
0.0
0.0
0.0
1.927
0.987
0.663
0.484
0.356
0,267
0.198

2.025
1,187
0.847
0.635
0.468
0.340
0.234

0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.920
1.365
1 144
1.009
0.905
0.827
0.763

2.743
2.936
2.998
3.032
3.053
3.067
3.077

0.833 0.291
0.293 0.208
0.161 0.164
0.104 0.137
0,071. 0.116
0.051 0.101
0.037 0.090

1.316 0.776
0.785 0.726
0.514 0.680
0.352 0.641
0.234 0.603
0.152 0.571
0.880 0 542

0.688 3.120
0,566 3.118
0.467 3.115
0.381 3.113
0.296 3.110
0.221 3.107
0.151 3.105

0.830 0.291
0.295 0.208
0.162 0.164
0.103 0.137
0,072 0.116
0.048 0.101
0.036 0.090

1.311 0.780
0.785 0.726
0.514 0.680
0.352 0.641
0.234 0.603
0.151 0.571
0.088 0.542

0.676 3.121
0.566 3.118
0.468 3.115
0.381 3.11.3
0.296 3.110
0,221 3.108
0.151 3.105

1.2—

s =5.0
g = l.8

V. DISCUSSION OF NUMERICAL RESULTS
AND CALCULATIONS

In this section we d,iscuss the numerical results
presented, in Table I and, in Figs. 1—6. The basic equa-
tion being tested is (13) of the text. It is being studied
with the following specific values of the parameters,
P= s, h'=1.8, c=0, y=1, and nonrelativistic kine-
matics. For this situation the representation may be
compared with potential theory where exact results
are known" for the particular potential V (r)

= —1 8e '(r .In a pr. evious paper' results for (13) were
presented for these values of the parameters and com-
pared with the exact results. In this paper we wish to
further test the representation (13) by using it to cal-
culate the total scattering amplitude f(s,s) for s= cosg
in the physical region. This may be accomplished by
inserting the modified, Cheng representation for the
partial-wave S matrix 5(l,s) given by (13) into the
background integral of (5) and evaluating f(s,s) for
various (s,s) pairs. The only input here is the exact top
trajectory n(s) as given in Ref. 21. Once the trajectory
has been specified, the residue P(s) is determined and
may be calculated directly from (13).

The background integral in (5) was evaluated by
first transforming the region ( ,'i ~,——-rs—+ice) into

NIP
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w .8
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0
—I.O —.8 —.6 —,4 —.2 0 .2 .4 .6 .8 1.0

1.8
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1.4-
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N I 0
V)

.8-

s =5.0
g =1.8

Z =COS 6
FIG. 1. The real part of the total scattering amplitude for an

attractive Yukawa potential of strength g'=1.8, unit range, and
energy s=5 is plotted as a function of s=cos9 where 0 is the
scattering angle. The exact calculation and the background
integral plus Regge term LEq. (5) of the text] coincide to within
plotting accuracy.

"A. Ahmadzadeh, P. Burke, and C. Tate, Phys. Rev. 131, 1315
(1965).
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z =cos e

Fxo. 2. Same as Fig. 1 except the imaginary part
of the amplitude is plotted.
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part of the amplitude except s=1. Circles and dashed curve:
calculated from the second term of Eq. (5) of the text (Regge
term}.
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(—1, 1) and then integrating via Simpson's rule. A
mesh size of 400 points was used, . The integral was
tested for stability and it was found, that increasing
the mesh size from 400 to 600 points caused a change in
the third or fourth decimal place. The integrand,
oscillates rapidly near the end points of integra, tion,
and while the factor Pr( —s)/sin~/ provides exponential
d,amping in the physical region of s, high accuracy is
not easy to achieve. On the other hand, the various
other functions required; namely, Pi(—s), Qi(s), and
Ei('s) were tested in various ways such as satisfaction
of recurrence relations and evaluation at special points,
a,nd it was found, that they can be calculated. via their
respective integral representations to about 6—7 place
accuracy with 16-point Gaussian formulas. Before
discussing the actual numerical results, we may add
that it is not feasible to use (5) to calculate f(s,s) for s
on the cut 1&s(+~ as the quantity Pi(—s)/sinsl
will no longer provide an exponential damping but
undergoes pure oscillations. This difficulty may be
overcome by explicitly exhibiting the singularities of

f(s,s) in the s plane as is done in Appendix A.

z =cos e

FIG. 6. Same as Fig. 4 except s=0.1.

The actual numerical results a,re presented in Table
I a,nd graphically in Figs. 1—6. The column labeled
"background, integral" of Table I gives the values of
the first term of (5). The one labeled "Regge term" is
the second term of (5). These have been plotted as
dashed curves on the graphs, Figs. 3—6 where the energy
is such that Ren& ——,'; namely, for s=1 and s=0.1. At
the other energy studied s=5, Remi —0.97 and the
single Regge term no longer contributes to f(s,s).

The column labeled "calculated amplitude" contains
the results for Eq. (5) of the text. The real and imagi-
nary parts of f(s,s) are plotted versus s= cose for s= 5
as shown in Figs. 1 and 2, respectively; as stated above,
no Regge term contributes here and consequently none
is shown. In other words, all of the amplitude comes
from the background, integral in this case. In Figs. 3
and, 4 similar results are shown for s= 1; Figs. 5 and 6
shoe the corresponding results for s=0.1. The latter
two cases; namely, s= 1 and, s=0.1 both show the real
and, imagina, ry pa, rts of the Regge term and it is clear
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from the graphs Figs. 3—6 that for these values of s and
s the statement that the amplitude may be approxi-
mated by a single Regge term, without its contribution
to the background integral, is certainly not true. We
also see from Figs. 1, 3, and S that Ref(s, z) near z= 1
is increasing toward its Born pole value, which for larger
s values, is just outside the physical region.

The column of Table I labeled "exact amplitud. e"
was obtained, by calculating eleven terms of the partial-
wave expansion. In this calculation the modified Cheng
representation for S(l,s) was used, although only the
lead, ing trajectory contributes, the contribution from
the second trajectory being in the fourth decimal place;
the error due to terminating the partial-wave expansion
at eleven terms varies from the fourth to the seventh
decimal place. Abmadzadeh has calculated S(t,s)
exactly up to D waves and @hen a comparison can be
made, we are in complete agreement with his results. "

VI. CONCLUSION

In conclusion, we have proposed a program for boot-
strapping entire Regge trajectories, which is free from
any undetermined arbitrary parameters. The final
success of any bootstrap program based, on Regge
trajectories must of necessity be determined, by the
convergence of the theory in terms of the number of
trajectories. With the present computational facilities
available, one may attempt a bootstrap with one or
perhaps two trajectories, but probably nothing beyond,
that. In this context, it then becomes imperative to
have a faithful amplitude in terms of a few trajectories.
We have constructed an approximate amplitude which
has built in analytic structure demanded by the
Mand. elstam representation, is unitary and, also retains
the correct threshold, behavior. The total amplitude
numerically computed, retaining just one top trajectory
gives good, agreement compared with the exact in
situations where such a comparison is possible; namely,
in potential theory. It is our hope that using the above
representation we can bootstrap entire Regge tra-
jectories, and, this is presently under investigation.

Convergence in terms of the number of trajectories
can of course be tested numerically. The parameters
of the asymptotic trajectories c, p, and h' are determined
from consistency. The effect of the particular chosen
asymptotic form, however, is a much subtler question.
One would, require a knowledge of which forms, if any,
permit a self-consistent solution and what difference
they make. The particular form (11) was chosen,
because it applies to a large class of energy-dependent
potentials within the framework of two-particle
unitarity.
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+, (A2)
2S'i'(zp —z)

where zp=1+p, '/2S. The last term is the celebrated
"Born pole, " fe(s,z). In what follows, Re and Im refer
to the unitarity cut, not the s cut. Now, let us write

1
ImA (lw, ,s) =—{A(li,s)—A*(X*,s)) = s'~ A (li,s)A*(X*,s)

2z

so that if A(X,S) is bounded by e-"&/gX for large X,
ImA(lb, ,s) is bounded by e '"&/X. Thus, we take the
real and imaginary parts of f(s,z) in (A2) and obtain
the Watson-Somrnerfeld transform for each of them
separately. ' Thus,

g2

f(s,z) =
2S'~'(zp —z)

[A (P, ,s)—Ae(li, s)j
ZD. P, &(

—z)
cosmic

(»-)p-
+z- Q Pg. )(—z). (A3)

cosmic

Inserting the integral representation for Pq( —z),

7rAPi, 1( z) 1—
cosmic 23/2

e~ sinhx
dXy

„(coshx—z) s~s
(A4)

we obtain

g Pg'(x)
Ref(s,z) = +&2 dx

2$ ~ (zp —z) $ (coshx —z) ~

-z P.„(—z)
+Re Q (2cx +1)P

sine'0. „
eXszx+- dx, (AS)

v2 „(coshx—z)'"

APPENDIX A: PROPERTIES OF THE CON-
STRUCTED TOTAL SCATTERING AM-

PLITUDE (NONRELATIVISTIC)
IN THE Z PLANE

Here we make explicit some of the properties of f(s,z)
advertised in Sec. II.

For a Vukawa potential, the first Born term

Aii(X,S)= (g'/2S)Q~;(cosh() (Ai)

so that upon decomposing the amplitude

A (lb„s) = LA P, ,s)—AePi, s))+A&P,S)

we obtain for the total amplitude:

f(s,z) =Q (2&)LA (X,s) —Ae(X,S)jPq g(z)



ABBE, KAUS, NATH, AND SRI VASTAVA

where

Bg (x,s) = e'~
2~i

A (X,s)+A*(X*,s)

—Ae(X, s) de%. . (A6)

Similarly, we obtain for Irnf(s, a):

by [exp(—l'$)]/l", as ~l'~ —+ oo (o)0) where cosh)
=1+32yyp'/(s —4pp') and y is as yet undetermined.
For the class of potentials for which the-modified, Cheng
representation was proved, lnS(l', s) was bounded by
2~ii' when

~

l'~ ~ ~ with Rel'( ——',. Even if the actual
bound, were much worse, the integrand, goes to zero as

l'~ —+ ~ with Rel'( —-', . Thus, I=O and as before
we obtain:

Imf(s, s) =v'2
Br'(x)

dx
t. (coshx —z)"'

lnS(l, s) =P
"*exp[(l' —l) $]

dl
l' —l

7rP..(-z)—
+Im 2 (2n-+ 1)P-

sing'Q, '&

ih'

(s—4t o')"

exp[—(l—c+e)$]
P i(cosh/)

where
$00

Br(x,s) =
2~i

Since
p

cosh)= 1+—,
2$

we have

2$+- dx, (A7)
v2 „(coshx—z)'t'

ih'
+ Qi, (cosh() . (B2)

(s—4pp') &

exp[ —(l—c+e) $]

XP„~(cosh/) -~ 0

For large s, with the assumed behavior of the input
trajectories as in (11) we have

"*exp[(l' —l) P] ih'
dl'—

l' l —(s 4poo)" —l c+I—

where

2p, p
cosh2$= 1+ j—== 1+—,

s 2s' 2s

to= 4y'+ p'/s.

and, consequently

ih'
lnS(l, s) —+ —Q~, (cosh/) —+ 0 for p) 0

Thus, the representation for f(s,s) through (A5) and
(A7) has the following analytic structure:

(1) It has the Born pole at z= sp.

(2) It has a cut in the z plane starting at z= 1+2''/s.
(3) The spectral function p(s, t), i.e., the discon-

tinuity in t of the d,iscontinuity in s of the function
f(s,t) is nonzero in a, region bounded by the correct
curved boundary given by to 4p'+ p'/s. ——

APPENDIX 8: DERIVATION OF A RELATIVISTIC
ANALOG OF THE MODIFIED CHENG REPRE-

SENTATION AND ITS ASYMPTOTIC AND
THRESHOLD PROPERTIES

Given (12) of the text, we follow our derivation of
the nonrelativistic modihed Cheng representation' and,
consider the following integral:

1
(expl't) lnS(l', s)

271-~ g l' —l
ih'

Q( .(cosh&), (B1)
(s—4t o')"

where C' is an infinite circle in the l plane. I.et us
assume that a parameter y exists, such that for
Rel') —o', the difference in bra, ckets in (B1) is bounded

as it should.
For small s, we have already shown in Ref, 6 that

for trajectories with

n, ,„,o no+0[(s —4p(P) ~p+l],

the integral term in (B2) has the proper (s—4pp')'+l
behavior. Thus, the proper threshold behavior for the
total phase shift would be insured if the other terms in
(B2) go like (s—4pp')'+: or higher. We have

(s—4pp')
—& exp[—(l c+n)$]—
yP„~(cosh() ~ (s—4yo')'+' —'—'

g~4P02

and the same behavior for the Q term. Therefore, if
p(-',—c, the proper threshold behavior is guaranteed.
Furthermore, if p) 0 then c(o. We expect c= o to be a
critical case since this corresponds to a potential of the
form r '. Thus, the proper threshold, and, asymptotic
behavior is verified, .

APPENDIX C: DERIVATION GF THE MODIFIED
CHENG REPRESENTATION FOR A SUPER-

POSITION OF YUKAWA POTENTIALS
AND ITS PROPERTIES

In Ref. 6 and in this paper, we have made the
assertion that, for a superposition of Yukawa potentials,
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with exponentially decreasing weight factor, the correct
generalization of (1) of the text is the replacement of the

Q function by the integral over the weight factor, and
that the resulting total amplitude correctly has a cut
beginning at the Born-pole position. The purpose of
this Appendix is to prove these assertions under the
ass333/spfio33 that the partial-wave S matrix for this
potential obey the result found by Cheng and Wuss;

namely) that'4
where

~
—X'$(B)

, Re,'&0
fx [ ~ ([7I ))r/3

cosh)(R) = 1+23/2s.

(C10)

since the lowest mass (longest range) part of the force
dominates in the integral of (CS). On the other hand,
for Reh'&0, we have in view of C1

S(lt,s):es '" Reit(0.
)g(~o0

Consider a potential of th, e form

e l""

(C1) Therefore,

I=0.

(C2)

Evaluating I via Cauchy's theorem then yields

(C11)

where
o(/3') - e '& for some e)0.

~l ~e0

Furthermore, consider the integral

dP,
' exp(Vf)

lnS(X', s)

(C3)
S(l,s) = exp

where

S„(l,s) =exp

o. (p, ')Q i (cosh&') d/3'

Xg S (f,s), (C12)

~~' expL(t' —f)P)
dl'

where

ig

gs
(/, )Q &(cos P')d&', (C4) igs exp[ —(i+33)&)

~(/3')P„r (cosh&')d/3'

and
cosh)' = 1+/3"/2s,

cosh)= 1+(2/3)3 /2s

p, &R&2p.

(CS)

(C6)

(C7)

then for Reh'&0 we have

If we abbreviate by P
z

F=1nS(X',s)— o (l3')Qq;(cosh/')d/3' (C8)

Since the result (C12) is an analytic function of &, and
since o(/3') has the behavior (C3), we may relax the
restriction (C7) on R and let R~ ~ in (C12).

The second part of the assertion is now easily proved.
since from (C12)

g2 00

lnS(l, s) —+ o (/3')Q3(cosh)')d/3' (C13)
$~00 Qs

and

CO Zg

fa„„(s,z) = g (21+1) o (/3')Q3(cosh&')d/3'P3(z)

exp( —lt'&)
p Re) '&0

[V[~~ P ~)3/2

p=o

(C9)
sg' " ~(/')4'

(C14)gs,. (1+/3"/2s) —z~ H. Cheng and T. T. Wu, Harvard University (to be
published) .

~ This result has recently been proved for a very general class
of potentials W. J. Abbe and Y. N. Srivastava (to be published). whichhas the correct cut beginning at z= 1+/3'/2s.


